en-NL
Die Lösungen von Polynomgleichungen 5. und 6. Grades beherrschen

Die Lösungen von Polynomgleichungen 5. und 6. Grades beherrschen

Satz von Ezouidi
Mourad Sultan Ezouidi
Language: Dutch - 194 pages
Paperback
€16.92
€16.92

Synopsis

Jahrhundertelang barg die Mathematik ein tiefgreifendes Paradoxon: Obwohl sich die Gleichungen des Universums mit vollkommener Klarheit formulieren lassen, galten ihre exakten Lösungen oft als unerreichbar. Seit Niels Henrik Abel 1824 behauptete, es existiere keine allgemeine Formel in Radikalen für Polynomgleichungen fünften Grades oder höher, akzeptierten Generationen von Mathematikern dies als unumstößliche Wahrheit. Doch dieses Buch beweist das Gegenteil. In „Lösung von Polynomgleichungen fünften und sechsten Grades mithilfe des Satzes von Ezouidi“ präsentiere ich einen strengen, symbolischen Rahmen, der diese lange gehegte Überzeugung widerlegt. Mit meinem Satz zeige ich, dass die vermeintliche Unmöglichkeit keine Eigenschaft der Algebra ist, sondern ein Missverständnis ihrer tieferen Struktur. Dies ist nicht bloß ein mathematisches Lehrbuch; es ist ein Manifest der Präzision und Wahrheit. Es verkündet das Ende der Ära der Näherung in der Algebra und den Beginn einer neuen Ära exakten symbolischen Denkens. Dieses Buch richtet sich an Studierende, Professoren und Forscher der reinen Mathematik und ist zugleich Lehrmittel und philosophisches Statement – ​​ein Zeugnis dafür,

About Mourad Sultan Ezouidi

The resolution of nth-degree polynomial equations has long been considered beyond the reach of classical algebraic methods. Traditional approaches, constrained by Abel’s theorem and the limitations of radicals, have failed to produce exact symbolic roots for equations of degree five and higher. For centuries, mathematicians have accepted this boundary as absolute — until the introduction of Ezouidi’s Theorem, a new and transformative approach to polynomial theory. Ezouidi’s Theorem redefines how high-degree polynomial equations are understood and solved. By introducing a new structural framework that connects the coefficients of the polynomial through recursive relations and discriminant-based transformations, the theorem provides a path to derive exact symbolic roots without resorting to approximation or numerical iteration. When applied to the nth-degree polynomial, Ezouidi’s Theorem unveils the underlying harmony between the coefficients ​ and the recursively determined quantities ​. These relationships allow the equation to be systematically decomposed into solvable components, leading to closed-form expressions for the roots. This approach restores what was once thought impossible — a complete, algebraic, and exact solution to the nth-degree polynomial. Through this method, each root of the equation emerges in its symbolic form, often expressed through radical and exponential relationships that maintain algebraic integrity. Unlike classical methods that rely on transformations or approximations, Ezouidi’s Theorem reveals the natural internal symmetry of the polynomial, demonstrating that the impossibility once asserted by Abel and Ruffini applies only to limited frameworks, not to all mathematical realities. This chapter (or presentation) presents a detailed application of Ezouidi’s Theorem to nth-degree equations, showcasing step-by-step symbolic derivations, recursive coefficient analysis, and final expressions of the exact roots — a demonstration of how modern algebra evolves beyond its historical constraints. The resolution of sixth-degree polynomial equations has long been considered beyond the reach of classical algebraic methods. Traditional approaches, constrained by Abel’s theorem and the limitations of radicals, have failed to produce exact symbolic roots for equations of degree five and higher. For centuries, mathematicians have accepted this boundary as absolute — until the introduction of Ezouidi’s Theorem, a new and transformative approach to polynomial theory. Ezouidi’s Theorem redefines how high-degree polynomial equations are understood and solved. By introducing a new structural framework that connects the coefficients of the polynomial through recursive relations and discriminant-based transformations, the theorem provides a path to derive exact symbolic roots without resorting to approximation or numerical iteration. When applied to the nth-degree polynomial, Ezouidi’s Theorem unveils the underlying harmony between the

Product specifications

BindingPaperback
LanguageDutch
Publishing dateThursday, 6 November 2025
Edition1
Pagecount194
Interior colorBlack/white
Size155 x 235 mm
AuthorMourad Sultan Ezouidi
CategoryScience > Math